
www.manaraa.com

 International Journal of

Geo-Information

Article

A Spatio-Temporal Building Exposure Database and
Information Life-Cycle Management Solution

Marc Wieland 1,2,* and Massimiliano Pittore 1

1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Centre for Early Warning
Systems, Telegrafenberg, Potsdam D-14473, Germany; pittore@gfz-potsdam.de

2 Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
* Correspondence: marc.wieland@zoo.ox.ac.uk

Academic Editor: Wolfgang Kainz
Received: 30 January 2017; Accepted: 5 April 2017; Published: 8 April 2017

Abstract: With an ever-increasing volume and complexity of data collected from a variety of sources,
the efficient management of geospatial information becomes a key topic in disaster risk management.
For example, the representation of assets exposed to natural disasters is subjected to changes
throughout the different phases of risk management reaching from pre-disaster mitigation to the
response after an event and the long-term recovery of affected assets. Spatio-temporal changes need
to be integrated into a sound conceptual and technological framework able to deal with data coming
from different sources, at varying scales, and changing in space and time. Especially managing the
information life-cycle, the integration of heterogeneous information and the distributed versioning
and release of geospatial information are important topics that need to become essential parts of
modern exposure modelling solutions. The main purpose of this study is to provide a conceptual
and technological framework to tackle the requirements implied by disaster risk management for
describing exposed assets in space and time. An information life-cycle management solution is
proposed, based on a relational spatio-temporal database model coupled with Git and GeoGig
repositories for distributed versioning. Two application scenarios focusing on the modelling of
residential building stocks are presented to show the capabilities of the implemented solution.
A prototype database model is shared on GitHub along with the necessary scenario data.

Keywords: database; life-cycle management; exposure; disaster risk management

1. Introduction

Natural hazards impose a threat to millions of people all over the world. Yet, if hazards can be so
different, the exposed assets are mostly the same; people, buildings, infrastructure, and the natural
environment. Despite the fact that exposure is often treated as a static entity, it should be regarded
as a dynamic process in which exposed assets undergo continuous changes [1]. This is particularly
relevant for exposed building stocks. Considering the disaster risk management cycle, exposed assets
are subject to changes throughout the different phases of risk management, reaching from pre-disaster
mitigation to the immediate response after an event and the long-term recovery of affected assets.
Such dynamics typically appear on different spatial and temporal scales. It can, for example, be linked
to continuous changes such as urbanization [2] or to changes of the residential building quality through
retrofitting or other risk-reducing measures [3] as part of the mitigation phase. Damage and collapse
of exposed buildings are typical abrupt changes that appear in consequence of a disastrous event [4].
Construction of temporary shelters or reconstruction of buildings are other examples of rapid and
continuous exposure dynamics that are typically linked to the short- and long-term post-disaster
phases [5].

ISPRS Int. J. Geo-Inf. 2017, 6, 114; doi:10.3390/ijgi6040114 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 2 of 20

With respect to the collection of exposure and/or damage data at a per-building scale, typical
methods involve in-situ screening surveys [6]. Often aggregated census data are used for regional
to national scale risk studies [7]. Lately, an increasing demand for remote sensing studies at these
scales can be observed, with a shift going from simple (single timestamp) mapping to (multi-temporal)
monitoring of exposed building stocks and damages from satellite images [8]. Due to the increasingly
large variety of possible exposure and/or damage data sources and their inherent spatio-temporal
nature, database models in support of disaster risk management need to consider aspects of data
harmonization and integration and be able to store and efficiently manage data coming from different
sources, at varying scales, with different quality, and changing over time and space. The crucial
point of data storage and management is, however, rarely mentioned in the context of disaster
risk management, despite the fact that it is becoming increasingly important with the increase in
data volume and complexity. Pittore et al. (2016) [9] provide an overview of the challenges of
implementing an exposure model for different geo-hazards at a global scale within a dynamic and
scalable framework. Specific points that need to be jointly addressed by a database model in the context
of disaster risk management include spatio-temporal data modelling, the use of standard taxonomies,
multi-representation, information life-cycle management, and distributed version control [10], each of
which can be considered separate research domains. A large body of literature exists on the different
topics (see Section 2); however, as yet, no publicly available data management technology exists, to best
of the authors’ knowledge that matches these requirements in a single solution with particular focus
on disaster risk management.

The objective of this work is, therefore, to provide a conceptual and technical solution to store
and manage heterogeneous building exposure data in a dynamic and spatially referenced manner
throughout their life cycle. The proposed solution is implemented on the basis of free and open source
software components. It combines best practices from different research domains into a single solution
that specifically addresses the data management needs throughout different phases of the disaster risk
management cycle.

The paper is structured as follows. Section 2 provides an overview of existing work in the
different research domains that are touched by this study. Choices made and advances achieved in
order to support disaster risk management efforts are addressed. Section 3 introduces the database
model. Sections 4 and 5 describe the information life-cycle management solution and distributed
version control. Section 6 builds up on the concepts and solutions presented in the previous sections
and describes a realistic scenario related to building exposure data management during different
phases of an earthquake risk management cycle. Sections 7 and 8 close the paper with discussion
and conclusions.

2. Exposure Data Management in Support of Disaster Risk Management

This section provides an overview of the most relevant work in the different research domains
tackled by this study and identifies the choices that were being made in order to implement a prototype
database and information life-cycle management solution.

2.1. Spatio-Temporal Databases

Spatio-temporal databases are characterized by both spatial and temporal semantics and deal
with real-world applications in which spatial changes occur over time. A data model must, therefore,
allow for spatial, temporal, and spatio-temporal queries to be performed. Changes over time can apply
to the geometry, topology, or attribute characteristics of an object, leading to eight possible change type
scenarios [11], as depicted in Figure 1. Earlier work in the direction of spatio-temporal database design
was characterized by separate research in either the spatial [12] or temporal [13] domain. Since the
emerging of combined spatio-temporal databases, numerous approaches have been proposed for data
modeling, and reviews have categorized and compared the existing work. Langran (1992) [14] was
one of the first authors who specifically addressed the temporal domain in Geographic Information

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 3 of 20

Systems (GIS). Different approaches to spatio-temporal data modelling have been proposed since
then, including object-oriented data modelling [15] or cell tuple-based data models, as proposed for
example in [16]. Also relational models have been proposed to handle spatio-temporal data such as
in [17,18]. Comprehensive literature reviews on the topic can be found, amongst others, in [19–21].
Relational database models are generally considered to be less efficient than object-oriented approaches
when dealing with very large data volumes and semi-structured data. However, due to its simplicity,
its ability to deal with transactions, its extensive join capabilities, and the fact that it is a well-known
and standard data modelling approach, a relational approach is followed in this study.

ISPRS Int. J. Geo-Inf. 2017, 6, 114 3 of 20

temporal domain in Geographic Information Systems (GIS). Different approaches to
spatio-temporal data modelling have been proposed since then, including object-oriented data
modelling [15] or cell tuple-based data models, as proposed for example in [16]. Also relational
models have been proposed to handle spatio-temporal data such as in [17,18]. Comprehensive
literature reviews on the topic can be found, amongst others, in [19–21]. Relational database models
are generally considered to be less efficient than object-oriented approaches when dealing with very
large data volumes and semi-structured data. However, due to its simplicity, its ability to deal with
transactions, its extensive join capabilities, and the fact that it is a well-known and standard data
modelling approach, a relational approach is followed in this study.

Figure 1. Possible types of changes of a spatio-temporal object. Modified after [11].

In spatio-temporal databases, different time representations are possible and the decision of
what to timestamp or on which level may vary. Timestamping an entire geographical object (e.g. a
building as a whole), for example, may be a valuable choice if storage capacity is limited, but it does
not allow for a description of the temporal variation of its individual attributes (e.g. number of
storeys) over its lifespan. Timestamping at the object primitive level (records) takes more storage
capacity but allows for a more detailed description of the temporal variability within objects with a
finer granularity. In this context, bi-temporal data models that support transaction time (or
registration time) and valid time (or real world time) are flexible and allow object identity to be
represented in a way that is suitable for the envisaged application. When modelling changes are
made to an exposed building stock, information updates (new information becomes available as
part of database updates) need to be distinguishable from real-world changes (actual modifications
to buildings) in order to identify and track the object identity, meaning the lifespan of an object.
This becomes particularly important when crowd-sourced data acquisition is involved [22].
Therefore, a bi-temporal data model with timestamping at the most detailed object primitive level is
selected. Changes to the building stock are recorded in discrete transactions, as is the case in
cadastral land register systems.

2.2. Multi-Representation of Spatial Objects

A multi-representation database stores different views of the same physical objects or
phenomena and links them with each other, which leads to differences in the semantics and in the
geometry of the objects [23]. The main reasons for introducing a multi-representation into a data
model include how such information can be analyzed with respect to information provided in
another representation, such as another scale or resolution. Moreover, linking different
representations allows for propagating updates between, for example, different map scales [24]. A
data model that supports multiple representations of spatial objects can also be defined as a
multi-resolution or multi-scale database.

Multi-resolution models mainly evolved in response to requirements imposed by web
mapping applications that deal with auto-generalization between different zoom levels [25].
CityGML [26], for example, provides a comprehensive data model to represent 3D city models
under consideration of five different detail levels. Two general cases of multi-resolution datasets

Figure 1. Possible types of changes of a spatio-temporal object. Modified after [11].

In spatio-temporal databases, different time representations are possible and the decision of what
to timestamp or on which level may vary. Timestamping an entire geographical object (e.g., a building
as a whole), for example, may be a valuable choice if storage capacity is limited, but it does not allow
for a description of the temporal variation of its individual attributes (e.g., number of storeys) over its
lifespan. Timestamping at the object primitive level (records) takes more storage capacity but allows
for a more detailed description of the temporal variability within objects with a finer granularity.
In this context, bi-temporal data models that support transaction time (or registration time) and valid
time (or real world time) are flexible and allow object identity to be represented in a way that is
suitable for the envisaged application. When modelling changes are made to an exposed building
stock, information updates (new information becomes available as part of database updates) need to
be distinguishable from real-world changes (actual modifications to buildings) in order to identify
and track the object identity, meaning the lifespan of an object. This becomes particularly important
when crowd-sourced data acquisition is involved [22]. Therefore, a bi-temporal data model with
timestamping at the most detailed object primitive level is selected. Changes to the building stock are
recorded in discrete transactions, as is the case in cadastral land register systems.

2.2. Multi-Representation of Spatial Objects

A multi-representation database stores different views of the same physical objects or phenomena
and links them with each other, which leads to differences in the semantics and in the geometry of
the objects [23]. The main reasons for introducing a multi-representation into a data model include
how such information can be analyzed with respect to information provided in another representation,
such as another scale or resolution. Moreover, linking different representations allows for propagating
updates between, for example, different map scales [24]. A data model that supports multiple
representations of spatial objects can also be defined as a multi-resolution or multi-scale database.

Multi-resolution models mainly evolved in response to requirements imposed by web mapping
applications that deal with auto-generalization between different zoom levels [25]. CityGML [26],
for example, provides a comprehensive data model to represent 3D city models under consideration of

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 4 of 20

five different detail levels. Two general cases of multi-resolution datasets can be distinguished. First,
datasets at different resolutions are generated independently and need to be linked in the database by
matching procedures. Second, lower resolution representations are derived from higher resolution data
by generalization functions and their link is established by the generalization process. In the context of
disaster risk management, multi-resolution is of high relevance, mainly due to the fact that exposed
assets and/or damages are often described by data from different sources and at different scales.
In previous work of the authors [27], for example, point- and path-wise visual screenings of single
buildings are used in combination with large area remote sensing observations to derive a multi-scale
exposure model. Due to the fact that exposure models often combine datasets from different sources at
different scales, particular emphasis was given to implement independent matching procedures.

Sester et al. (2004) [23] describe three possible structures for matching different resolutions in
the database: attribute-based structure, additional attribute, and additional linking tables. In an
attribute-based structure, everything is stored in one dataset and additional attributes are used
to describe the different appearances. Another option is to link the datasets by using additional
attributes that store only identifiers (IDs) that refer to the corresponding objects at the lower resolutions.
One attribute per resolution level would be required for this option and the different resolution objects
could be stored either within the same table or in different tables. The third option is based on
the additional attribute structure but stores the resolution IDs in a separate table. To minimize the
complexity of Structured Query Language (SQL) queries and the number of database accesses, the
additional attribute linking structure was selected, and attributes are added for each resolution level in
the same table.

2.3. Taxonomy

Given the complex elements composing the exposure of the built human environment (for instance,
the structural components of a building), a clearly defined taxonomy is essential in order to overcome
possible misunderstandings amongst data collectors and analysts, especially at transnational and
global scales. The preparation of a taxonomy involves the creation of an exhaustive and structured set
of mutually exclusive and well-described attributes, which can be structured hierarchically or faceted
and encoded in numeric or alphabetical codes [28]. A taxonomy suitable for describing exposure
at large-scale should be international in scope, detailed, collapsible, extendable, user friendly, and
suitable to describe different types of exposed assets with enough detail to match the requirement
of the related vulnerability models [29]. Moreover, ideally an exposure model could accommodate
structural and non-structural features relevant for different natural hazards, therefore setting the base
for an efficient, integrated, multi-risk exposure modelling. The harmonization of information between
taxonomies is of particular importance in order to be able to combine or compare data that have been
collected about different inventories, or over different time periods, and which may potentially have
involved different data collection methods and/or spatial units. Harmonization can be achieved by
applying consistent standards and taxonomies across different data sets and by establishing look-up
tables mapping the homologous categories of different taxonomies.

Several taxonomies have been developed mainly in the field of earthquake engineering in order
to classify and characterize building inventories in standardized and comparable ways. Widely
used taxonomies that aim at describing the structural components of buildings include HAZUS [30],
the European Macroseismic Scale 1998 (EMS-98) [31], Prompt Assessment of Global Earthquakes for
Response (PAGER) [32], and the World Housing Encyclopedia [33]. A structural taxonomy is just
one of several taxonomies that together contain all the relevant data about a particular exposed asset.
Other (non-structural) taxonomies are used to encode further information, including non-structural
features, occupancy, population, or economic values. A recently established structural taxonomy
that also includes few non-structural attributes (e.g., occupancy) is the Global Earthquake Model
(GEM) Building Taxonomy [29]. It follows the concept of a faceted taxonomy [34]. In comparison to
hierarchical taxonomies, where the data are organized in a tree-like structure, the hierarchy of classes

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 5 of 20

in faceted taxonomies is not fixed and can be changed. Faceted taxonomies allow information to be
navigated along multiple paths corresponding to different arrangements of the facets and items in more
than one dimension. Due to its clear and flexible structure, its complexity and comprehensiveness and
the fact that it may also be applicable to hazards other than earthquakes, the GEM Building Taxonomy
Version 2.0 was used as the basis to structure the taxonomy schema of the proposed database model.

2.4. Information Life-Cycle Management

The concept of a life cycle implies that information elements (in the following referred to as
objects) have a definable point of creation and a similar point of destruction or disposal. Life cycle
development focuses on the change of the information itself and on the change of its value over time.
Value transformation occurs when information is created, updated, or disposed. Information value
is often defined in financial terms as the amount a decision maker would be willing to invest for
information prior to making a decision. However, the types of information value can be of different
natures, reaching from financial to operational to intrinsic. Chen (2005) [35], for example, presents
an information valuation approach that quantifies the value of a given piece of information in an
automated manner based on an analysis of its usage over time. In the context of building exposure data
management, the information value is closely linked to information quality, wherein map and thematic
accuracy are widely used proxies to value the information. Map accuracy can be distinguished into
location and classification accuracy. Location accuracy answers the question if the objects that are
mapped and the data sources themselves are located on the earth and to one another. Classification
accuracy quantifies if a material on the earth or a condition is mapped correctly [36]. The thematic
accuracy is less well constrained and can be approached from different directions. A possible way to
quantify thematic accuracy is to assign a degree of belief, as is described in detail by Huber (2006) [37].
In the context of this study, the information value is associated with map accuracy for spatial attributes
and with thematic accuracy (here defined as degree of belief) for thematic attributes.

In database models, the information life cycle indicates the history of objects that are stored in a
database both in terms of their real-world evolution and in terms of the database transactions referring
to them. This means that a database model should be able to keep track of and archive the real-world
changes of an object (from creation to destruction). At the same time, it should be able to register any
modifications to an object at database level by logging transactions that are linked to a specific object.
In order to do this, a bi-temporal database model is implemented in this study as described above.

Information collected from different sources is, moreover, subject to uncertainties that not only
vary between sources but also over time. Therefore, life-cycle management should be uncertainty
aware. The integration and use of spatio-temporal information affected by uncertainty is a topic
gaining attention since when Geographical Information Systems (GIS) started becoming widespread.
For instance, Shi (2007) [38] describes an object-oriented meta-data error database for capturing quality
information and temporal information, information about sources of data, processing steps, and
cartographic generalizations on the datasets. Tu et al. (2006) [39] use hierarchical and hybrid Bayesian
networks to integrate information among multiple agencies. Butenuth et al. (2007) [40] introduce
integration algorithms for vector and raster data sets in federated databases. In previous work,
the authors used Bayesian networks to integrate proxy information extracted from different image
sources to derive posterior probability distributions of structural vulnerability classes for buildings [41].

2.5. Distributed Version Control

With respect to non-distributed version control systems, where clients have to connect to a
central server to coordinate the versioning, a distributed version control system takes a peer-to-peer
approach. In a distributed version control system, each client’s copy of a repository is a repository
on its own, able to synchronize with any other peer to exchange patches and further software
development [10]. Recently, a new class of distributed version control systems, which have evolved
in the domain of software development, can be considered mature enough to be used for handling

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 6 of 20

geospatial information. The most popular and widely used among these systems is Git, which
was originally developed by Linus Torwald for managing Linux source-code. With the focus on
source-code versioning, it can only be applied to version information that is stored in text-based
formats such as GeoJSON or Comma Separated Value (CSV) files. GeoGig is a system that builds
up on the general principals of Git and explicitly supports the versioning of geospatial information.
GeoGig is developed and maintained by Boundless on a free and open-source basis. The founders
of GeoGig support a shift away from treating geospatial information as strict data (stores of rows
and columns optimized to be sliced in different ways, copied extensively, and occasionally updated),
towards treating it as software developers treat source code; as a material living in collaborative
infrastructure that constantly tracks its origin and evolution, even when copied and edited by disparate
users [10]. With distributed version control systems like Git or GeoGig major problems that have
affected users of geospatial information can be addressed, including multi-organization/multi-user
collaboration, crowd-sourced vs. authoritative data collection, or meta-data sharing and updating.
The capabilities of such distributed version control systems in disaster risk management have recently
been demonstrated during Typhoon Yolanda where crowd-sourced damage mapping activities have
been version controlled by GeoGig [10]. In this study, we use both the Git and GeoGig workflows to
test the distributed version control of database release states.

3. Database Model

This section describes the spatio-temporal database model that has been designed to efficiently
store and manage data represented at different spatial scales and changing over time, while being able
to keep track of the source and quality of the single attributes. The implementation of the database
model is based on the free and open-source relational database management system PostgreSQL.
It supports most SQL constructs, including sub selects, transactions, and user-defined types and
functions as well as many standard data types, including date/time types. For spatial functions, the
PostGIS extension is applied. It adds support for geographic objects to the PostgreSQL database.
PostGIS follows the OpenGIS Simple Features Specification for SQL, with version >2.0 supporting
both vector and raster objects and any related spatial query capabilities. Also, topological models
are supported to handle objects with shared boundaries. To deal with the multi-representation
of spatial objects, a bottom-up approach is followed in which datasets of different resolutions are
linked by using additional attributes, which identify the corresponding objects in the lower levels of
detail. A bi-temporal representation of time has been implemented, where a trigger function allows
database transactions to be logged along with the transaction time and optional additional information
for user-defined tables and attributes. The temporal support has been implemented on the spatial
object level to allow for a more detailed description of the temporal variability within objects with a
finer granularity.

The database model is structured into three schemas. The object schema (Figure 2 left) contains
the main description of the database objects, their spatial reference, and representation at different
resolutions. In addition to the spatial properties, the object details are characterized by attribute
and qualifier values, which are defined within the taxonomy schema (Figure 2 right). The history
schema (Figure 3) holds the general structure for logging database transactions and provides, therefore,
the transaction time component of the bi-temporal data model. In the following, the taxonomy
implementation, the multi-resolution spatial support, and the multi-temporal extension are explained
in further detail.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 7 of 20
ISPRS Int. J. Geo-Inf. 2017, 6, 114 7 of 20

Figure 2. Database model prototype, with object schema (left) and taxonomy schema (right).

Figure 3. History schema.

3.1. Taxonomy

The GEM Building Taxonomy Version 2.0 was used as basis to structure the taxonomy schema
of the current database model prototype. It was attempted to design the database schema structure
in a way to keep it flexible and open to any other taxonomies. Taxonomy attributes are organized in
a dictionary table (taxonomy.dic_attribute_type), where each attribute type is assigned a unique ID in
alphanumeric format and linked to a textual description. Categorical attribute values
(taxonomy.dic_attribute_value) are stored in a separate dictionary table and are also defined by
unique IDs and linked with a textual description. Numeric or textual attribute values are inserted
for the single object primitives directly in the table object.main_detail. Each attribute type needs to be
associated with one or more hazard types (taxonomy.hazard) and be linked to a specific taxonomy
(taxonomy.dic_taxonomy) in order to clearly categorize the attributes and to identify their source and
application.

In addition to attribute types and values, qualifiers are defined within the taxonomy schema of
the database prototype. Qualifiers in the context of this work refer to additional descriptors of

Figure 2. Database model prototype, with object schema (left) and taxonomy schema (right).

ISPRS Int. J. Geo-Inf. 2017, 6, 114 7 of 20

Figure 2. Database model prototype, with object schema (left) and taxonomy schema (right).

Figure 3. History schema.

3.1. Taxonomy

The GEM Building Taxonomy Version 2.0 was used as basis to structure the taxonomy schema
of the current database model prototype. It was attempted to design the database schema structure
in a way to keep it flexible and open to any other taxonomies. Taxonomy attributes are organized in
a dictionary table (taxonomy.dic_attribute_type), where each attribute type is assigned a unique ID in
alphanumeric format and linked to a textual description. Categorical attribute values
(taxonomy.dic_attribute_value) are stored in a separate dictionary table and are also defined by
unique IDs and linked with a textual description. Numeric or textual attribute values are inserted
for the single object primitives directly in the table object.main_detail. Each attribute type needs to be
associated with one or more hazard types (taxonomy.hazard) and be linked to a specific taxonomy
(taxonomy.dic_taxonomy) in order to clearly categorize the attributes and to identify their source and
application.

In addition to attribute types and values, qualifiers are defined within the taxonomy schema of
the database prototype. Qualifiers in the context of this work refer to additional descriptors of

Figure 3. History schema.

3.1. Taxonomy

The GEM Building Taxonomy Version 2.0 was used as basis to structure the taxonomy schema
of the current database model prototype. It was attempted to design the database schema structure
in a way to keep it flexible and open to any other taxonomies. Taxonomy attributes are organized
in a dictionary table (taxonomy.dic_attribute_type), where each attribute type is assigned a unique
ID in alphanumeric format and linked to a textual description. Categorical attribute values
(taxonomy.dic_attribute_value) are stored in a separate dictionary table and are also defined by unique
IDs and linked with a textual description. Numeric or textual attribute values are inserted for
the single object primitives directly in the table object.main_detail. Each attribute type needs to be
associated with one or more hazard types (taxonomy.hazard) and be linked to a specific taxonomy
(taxonomy.dic_taxonomy) in order to clearly categorize the attributes and to identify their source
and application.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 8 of 20

In addition to attribute types and values, qualifiers are defined within the taxonomy schema of the
database prototype. Qualifiers in the context of this work refer to additional descriptors of attributes
that are independent of the type of hazard and the application. Potential qualifiers to be supported
could include accuracy, precision, quality, or valid time. Qualifier types (taxonomy.dic_qualifier_type)
are defined by unique IDs and linked with a textual description. The specific states of the qualifier
types are given by values that are stored in a separate dictionary table (taxonomy.dic_qualifier_value)
in case of categorical variables. Numeric or textual qualifier values are inserted for the single object
primitives directly in the table object.main_detail_qualifier.

3.2. Multi-Resolution Spatial Support

Comprehensive spatial support to the database is provided by the PostGIS extension to
PostgreSQL. A particular requirement for the database, however, was the support of multiple object
representations. Due to the focus on geographical objects derived from imaging techniques and
mapping approaches, multi-representation can be seen in terms of multi-resolution or multi-scale
datasets, where different generalization levels of the objects are provided. However, also multiple
representations of datasets at the same resolution are possible when, for example, data from different
sources are integrated (e.g., building footprints from cadastral maps together with footprints extracted
by satellite image analysis).

In the current implementation of the database, a bottom-up approach is followed where datasets
of different resolution are linked by additional attributes, which refer to the corresponding objects in
the lower levels of detail. A trigger function object.update_resolution_ids() has been implemented to
identify for each object at each resolution level its corresponding representations at the other resolution
levels and to update the resolution IDs based on the spatial relationship between the geometries.
More specifically, the function identifies for each object with a given polygon geometry type a point
inside the polygon that is closest to its centroid and, based on this, performs a spatial join with the
polygon geometries at the other resolution levels to obtain their corresponding IDs. The function is
called from a row level after the INSERT or UPDATE trigger of the geometry column (the_geom) and,
therefore, updates the IDs on the fly whenever the geometry of any record at any resolution level is
modified or a new record is inserted. A row level after DELETE trigger handles the ID updates for
record deletes. The resolution ID updates are only performed for records that are actually affected by
the INSERT, UPDATE, or DELETE triggers. This is done to avoid affecting negatively the database
performance by having to re-compute ID relations for the whole dataset.

In its current implementation, the data model supports three resolution levels, based on the
assumption that the database will be populated mostly with information derived from census reports,
satellite image analysis, and in-situ screening techniques. The data model can be easily extended to
other numbers of resolution levels, and level definitions are not fixed or bound to specific conditions
but can be customized depending on the specific application.

In order to derive new (lower resolution) data sets from existing (higher resolution) ones,
a generalization function needs to be defined to describe this action. The choice of the generalization
function depends upon the type of objects to be created and the desired resolution level. For example,
a generalization function that derives aggregated building blocks from higher resolution building
footprints may be different from a function that creates a built-up area footprint from a set of building
blocks. To exemplify the capabilities of the data model, a simple prototype generalization function
(simplify_buildings()) has been implemented for the geometrical simplification of building footprints to
aggregated building blocks.

3.3. Multi-Temporal Support

A bi-temporal representation of time has been implemented on the primitive spatial object level
to allow for a detailed description of the temporal variability within objects. Valid time is considered
an object qualifier and is therefore specified for each record by qualifier timestamps. Valid time refers

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 9 of 20

to real world timestamps, and, therefore, unlike the transaction time, it needs to be set for each record
by the user or by the application that inserts or updates the records as a consequence of a real world
change. Therefore, even continuous real world changes are detected in discrete steps in the database.
This is, however, in line with the considered data acquisition methods for which the database is
intended. In-situ surveys or remote sensing analysis for example depend on (stepwise) acquisition
times of the surveys or the satellite images acquired over an area of interest. Satellites have specific
revisit periods or temporal resolutions, which depend upon their orbit, sensor specifications, and
number of satellites (in the case of a satellite constellation), which in practice define the temporal
granularity. Similarly, in-situ surveys are usually carried out iteratively at discrete time steps.

In order to keep track of the history of the real world objects, a live-history approach is followed.
This means that deleted or changed records are archived in the history schema (history.logged_actions)
along with additional information about the corresponding database transaction. A generic trigger
function history.if_modified_func() archives the records and logs the transaction times and additional
information about changes to selected tables and attributes. The function is based on the PostgreSQL
Audit Trigger and was modified according to the requirements of this work. The logging of transactions
can be done at a statement level or at a row level. Control is logged separately for each table, and the
data columns to be logged can be specified individually. Row values are recorded as hstore fields instead
of text, which allows for more sophisticated queries on the history and reduces query complexity and
storage space.

The combination of a bi-temporal data model with a live-history approach allows for a
straightforward recovery of former states of the database at defined transaction or valid times
and for sophisticated temporal queries. Two functions have been implemented that allow views
of the transaction and valid time history, which can be easily queried for spatial, attribute, valid,
and transaction time components, to be recovered.

• ttime_gethistory(): This function selects from history.logged_actions all records that have been
modified in the logged tables. It provides the transaction time history.

• vtime_gethistory(): This function selects from history.logged_actions all records that have been subject
to a real world change. For each record, the latest version at each valid time is selected. It provides
the valid time history.

Examples that use transaction and valid time history functions are given in Section 6.2.

4. Information Life-Cycle Management Solution

Figure 4 shows a schema of the information life cycle exemplified within this work and
implemented at database level in PostgreSQL. New information enters the database workflow in
the creation phase. Along with the actual object to be added to the database, several meta-data
attributes need to be defined. Among these are the source of the information item and its value.
The use of data entry forms for user driven information creation can enforce these additional meta-data
attributes. Once new information is created, it is integrated with already existing information. In the
case of geospatial information, it is checked if geoinformation already exists in the database at the
same location of the newly created item. A spatial overlap between new and old items forces their
values to be compared, and the information item with the lower value is replaced with the higher
value item. The overall values of the database are then updated accordingly, and the information is
ready for usage for further analysis and interpretation by the user. Several customized spatio-temporal
query functions and views are implemented in order to improve information accessibility during the
usage phase of the life-cycle model. The database model supports transaction logging and record
archival. Once information is modified or disposed, its previous state can be archived and the database
transaction can be logged. In case the modification refers to an update with information with higher
value (e.g., better information became available), the archiving mechanism allows previous database
states to be retrieved or recovered at any given transaction time. In case of the modification or disposal

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 10 of 20

referring to real-world changes, this mechanism allows the full history of an object from its creation
(e.g., construction of a building), through modifications (e.g., retrofitting of a building) to its disposal
(e.g., destruction of a building) to be archived. The different parts of the database workflow are
described in greater detail in the following paragraphs.ISPRS Int. J. Geo-Inf. 2017, 6, 114 10 of 20

Figure 4. Schematic information life cycle depicting the information flow as supported by the database
model. The model is coupled with Git and GeoGig for the versioned release of database states.

The content of the database can be released and versioned at any time in order to distribute
and share it in a decentralized way. Information to be released can be the whole database or subsets
of it in the form of summary views. Once information is released, it enters a new workflow. For
releases and distributed versioning, we currently use Git [42] and GeoGig [10]. A possible release
workflow is schematized in Figure 4 and is further discussed in Section 5.

4.1. Information Creation

Information creation includes discovery, accumulation, and aggregation. It is the point where
information is captured and enters the managed environment. The issues governing information
creation include data entry, acquisition standards, selection of attributes and taxonomies, and
documentation (e.g. meta-data creation).

4.2. Information Usage

At this stage of the life cycle, information is actively or semi-actively in use. It is assumed to be
current and the most useful and valuable (accurate) to the application. Issues governing
information usage include accessibility, transformations and the effectiveness of delivery (query
functionality), and distribution (speed, mapping, etc.). Views are used in the database model to
interact with the database content, which natively is stored in distributed schemas and tables. An
editable view is used to access a comprehensive description of the content and to insert, update,
and delete records. The modifications to the view are distributed to the relevant underlying tables.
Read-only views are further generated to create a meta-data summary of the current state of the
database content and a simplified data view that is readily formatted for mapping and release.

4.3. Information Modification and Value Updating

In the database model, the information is described at the attribute level using qualifiers. In
principle, different kinds of value descriptors are possible, depending on the user-driven definition
of the information value. This could be costs, accuracy, and degree of belief; time; or other
application specific values. In the context of this work, information value is associated with quality

Figure 4. Schematic information life cycle depicting the information flow as supported by the database
model. The model is coupled with Git and GeoGig for the versioned release of database states.

The content of the database can be released and versioned at any time in order to distribute and
share it in a decentralized way. Information to be released can be the whole database or subsets of it
in the form of summary views. Once information is released, it enters a new workflow. For releases
and distributed versioning, we currently use Git [42] and GeoGig [10]. A possible release workflow is
schematized in Figure 4 and is further discussed in Section 5.

4.1. Information Creation

Information creation includes discovery, accumulation, and aggregation. It is the point
where information is captured and enters the managed environment. The issues governing
information creation include data entry, acquisition standards, selection of attributes and taxonomies,
and documentation (e.g., meta-data creation).

4.2. Information Usage

At this stage of the life cycle, information is actively or semi-actively in use. It is assumed to be
current and the most useful and valuable (accurate) to the application. Issues governing information
usage include accessibility, transformations and the effectiveness of delivery (query functionality),
and distribution (speed, mapping, etc.). Views are used in the database model to interact with the
database content, which natively is stored in distributed schemas and tables. An editable view is
used to access a comprehensive description of the content and to insert, update, and delete records.
The modifications to the view are distributed to the relevant underlying tables. Read-only views are
further generated to create a meta-data summary of the current state of the database content and a
simplified data view that is readily formatted for mapping and release.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 11 of 20

4.3. Information Modification and Value Updating

In the database model, the information is described at the attribute level using qualifiers.
In principle, different kinds of value descriptors are possible, depending on the user-driven definition
of the information value. This could be costs, accuracy, and degree of belief; time; or other application
specific values. In the context of this work, information value is associated with quality in the form of
map accuracy for geometrical information and degree of belief for thematic information.

Table 1 shows an excerpt of a dynamically created meta-data summary view. The view
summarizes the currently available attributes, their sources, and their average value (here average
degree of belief in percent). Whenever information is updated in the database, its value is also
updated, and, accordingly, the average value of the overall information content of the database is
adjusted. The value of information can be used as a proxy to guide the information integration,
as proposed, for example, by Tu et al. (2006) [39] or by previous work of the authors, in which Bayesian
networks are used for automated information integration and the probabilistic vulnerability estimation
of structures [41]. In its current implementation, the database model provides all the necessary
attributes and updating mechanisms to set up automated integration functions under consideration
of uncertainties.

Table 1. Excerpt of a dynamically created meta-data summary table that summarizes the currently
available attributes, their sources, and the evolution of their average value (here degree of belief in
percent) from release R1 to R3.

Attribute
Type Description Source Value

Type
Avg Value

R1
Avg Value

R2
Avg Value

R3

HEIGHT Height RRVS BP 0.00 0.00 47.52
LLRS Lateral Load-Resisting System RRVS BP 0.00 0.00 46.88

MAT_PROP Material Property RRVS BP 0.00 0.00 45.58
MAT_TECH Material Technology RRVS BP 0.00 0.00 55.29
MAT_TYPE Material Type RRVS BP 0.00 0.00 52.82

OCCUPY Building Occupancy Class RRVS BP 0.00 0.00 46.76
OCCUPY_DT Building Occupancy Class—Detail RRVS BP 0.00 0.00 49.35
THE_GEOM Object geometry EO, OSM, OF BP 73.00 84.04 86.91
YR_BUILT Date of Construction or Retrofit RRVS BP 0.00 0.00 0.00

4.4. Information Disposal and Archiving

In the case of geospatial information management, information about a geographic object can
be disposed and archived because (1) it is replaced with information of higher value (e.g., accuracy)
or (2) the object that the information is referring to (e.g., building) has been modified or destructed
in reality. In both cases, the obsolete information is disposed and archived for possible later retrieval.
The difference between the two cases being that in case (1) the archived information refers to the
database transaction life-cycle of the object, whereas in case (2) the archived information relates to the
real-world life-cycle of the object.

Depending on the aim of the information system, the type and duration of archiving disposed
information may vary. Archived information relating to the real-world changes of an object is an
essential part of the life cycle of the actual object under observation. It is not disposed because
the information lost value but because the object changed or lost its existence in the real world.
The information referring to this object may therefore still be of great importance for further analysis
even after its disposal. On the contrary, archived information that was disposed because better
information became available has, by definition, less value than the new information. Therefore,
the decision on whether to archive the disposed information or not and, in this case, for how long to
archive it may differ significantly from the previous case.

In the database model, both cases of information disposal and archiving are supported.
A specific PL/pgSQL (Procedural Language/PostgreSQL) function (history.history_table()) has been
implemented in order to activate or deactivate the logging of database transactions and to archive

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 12 of 20

modifications and disposal of information. The function can be applied to specific tables or database
views as a whole, or the transaction logging can be activated only for specific attributes of a table
(e.g., log transactions only if attribute x is modified). If, for example, only the attributes related to the
valid time of the object are activated for logging, the system would archive only the real-world change
(case 2) and not the information updates (case 1).

5. Distributed Version Control and Release

The database model provides rich functionality to log database transactions, archive records,
and query object histories in space and time. It provides a framework for information integration,
management, and versioning in a non-distributed manner, as it only offers collaboration of multiple
users around a single centralized database. In order to maintain its intrinsic benefits (e.g., quick
and comprehensive queries across different states of the database and its records), while making it
accessible and manageable in a distributed multi-user environment, the database model can be coupled
with Git and GeoGig version control systems.

The schema of a typical versioning workflow is provided as part of Figure 4. The principal
workflows and commands are similar between Git and GeoGig. The content is stored in a repository,
which has three areas: the working tree, the staging area, and the local repository.

• The working tree is the area of the repository where the work is actually done on the data. Data in
the working tree is not part of a defined version but instead can be edited and altered before
turning it into a new version that will be safely stored.

• The staging area is an intermediate area where data is stored before moving it to the database.
• The local repository is where the history of the repository is stored, as well as all the versions that

have been defined.
• The remote repository is a remote copy of a repository that allows for collaborative work between

different people. In a collaborative environment, the remote repository holds the reference history.
Users can clone it, work on the cloned repository locally, and push their changes back to the
remote repository.

The process of versioning geospatial data consists of the following steps:

1. Importing data into the working tree so it can be managed by GeoGig (note that this step is
additional with respect to a typical Git workflow).

2. Adding data from the working tree to the staging area.
3. Committing to the local repository.
4. Pushing local changes to the remote repository and/or fetching changes from the remote

repository to the local repository in order to synchronize them. As new data are added to the
repository database, new versions are created that define the history of the repository. While some
versioning systems store the differences between consecutive versions, GeoGig stores the full set
of objects that comprise each version. For instance, if the geometry of a feature has been modified,
GeoGig will store the definition of that feature, which will be kept in the database along with
the previous version of the same feature. For features not modified from one version to another,
the corresponding objects are not stored again, and the new version points to the same previous
object. So while each version is a new set of objects, the data for these objects are only stored once.

Where the database archiving functionality is designed to ease storage and querying of object
histories and to provide a framework for information integration and updating in a non-distributed
manner, Git and GeoGig are designed to ease collaboration among people working on the same
data. The repository can accept changes from different people working on the same data, and the
changes done by different users can be shared. Instead of a single repository, there can be a number
of connected remote repositories, each of them working independently but communicating and
interacting when needed.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 13 of 20

6. Application Scenarios

In order to test the capabilities of the proposed database and life cycle management solution with
a coupled Git/GeoGig workflow for distributed version control of releases, two application scenarios
have been created.

6.1. Scenario I: Information Integration and Value Updating

The aim of the first scenario is to integrate three different data sources to a unified dataset that
covers the whole Area of Interest (AOI) while improving the overall value for the final inventory.
The location and geometries considered in the scenario are taken from different sources over a district
of a German city (Figure 5). Geometries are iteratively inserted, updated, and deleted with the aim
to simulate both real-world changes to the building objects (construction, modification, destruction)
and information updates, as result of better information becoming available about existing objects
during their life-time. Attribute values for updates are randomly chosen from a set of allowed values
according to the GEM Building Taxonomy for randomly selected objects.

ISPRS Int. J. Geo-Inf. 2017, 6, 114 13 of 20

6.1. Scenario I: Information Integration and Value Updating

The aim of the first scenario is to integrate three different data sources to a unified dataset that
covers the whole Area of Interest (AOI) while improving the overall value for the final inventory.
The location and geometries considered in the scenario are taken from different sources over a
district of a German city (Figure 5). Geometries are iteratively inserted, updated, and deleted with
the aim to simulate both real-world changes to the building objects (construction, modification,
destruction) and information updates, as result of better information becoming available about
existing objects during their life-time. Attribute values for updates are randomly chosen from a set
of allowed values according to the GEM Building Taxonomy for randomly selected objects.

Figure 5. Scenario Area of Interest (AOI) with the different sources for creating a unified building
inventory.

The data sources used for this application scenario are 422 building footprints extracted from
Earth Observation (EO) data using remote sensing tools [43], 1539 buildings from OpenStreetMap
(OSM), and cadastral data from an Official source (OF) that holds 541 buildings. The value of the
sources (here defined by the map accuracy) increases from EO to OSM to OF.

During the integration phase, the database transactions shall be logged and changes shall be
archived for possible later retrieval. At each critical stage of the integration, a release is issued via
Git and GeoGig and pushed to a remote repository. The following database transactions were
performed in order to integrate the available data:

• Transaction tt1: Insert object geometries from EO data analysis.
• Release R1: EO data.
• Transaction tt2: Update EO geometries with geometries from OSM where (ValueOSM >

ValueEO) ∧ (GeomOSM ∩ GeomEO).
• Transaction tt3: Insert OSM objects where not GeomOSM ∩ GeomEO.
• Release R2: EO and OSM data.
• Transaction tt4: Update attributes of 10 buildings with values following the standards for

RRVS data entry.
• Transaction tt5: Update EO and OSM geometries (EOSM) with geometries from OF where

(ValueOF > ValueEOSM) ∧ (GeomOF ∩ GeomEOSM).
• Transaction tt6: Insert OF objects where not GeomOF ∩ GeomEOSM.
• Realease R3: EO, OSM and OF data enriched with RRVS attributes.

Table 1 shows the evolution of the average value for selected attributes as the dataset evolves
over time. Figure 6a shows the integrated building inventory at release 3 (R3), with colors
indicating the different sources of the building geometries. Figure 6b shows the database state at
transaction time 2 after the update of EO geometries with geometries from OSM. This state lies in

Figure 5. Scenario Area of Interest (AOI) with the different sources for creating a unified
building inventory.

The data sources used for this application scenario are 422 building footprints extracted from
Earth Observation (EO) data using remote sensing tools [43], 1539 buildings from OpenStreetMap
(OSM), and cadastral data from an Official source (OF) that holds 541 buildings. The value of the
sources (here defined by the map accuracy) increases from EO to OSM to OF.

During the integration phase, the database transactions shall be logged and changes shall be
archived for possible later retrieval. At each critical stage of the integration, a release is issued via Git
and GeoGig and pushed to a remote repository. The following database transactions were performed
in order to integrate the available data:

• Transaction tt1: Insert object geometries from EO data analysis.
• Release R1: EO data.
• Transaction tt2: Update EO geometries with geometries from OSM where (ValueOSM > ValueEO)

∧ (GeomOSM ∩ GeomEO).
• Transaction tt3: Insert OSM objects where not GeomOSM ∩ GeomEO.
• Release R2: EO and OSM data.
• Transaction tt4: Update attributes of 10 buildings with values following the standards for RRVS

data entry.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 14 of 20

• Transaction tt5: Update EO and OSM geometries (EOSM) with geometries from OF where
(ValueOF > ValueEOSM) ∧ (GeomOF ∩ GeomEOSM).

• Transaction tt6: Insert OF objects where not GeomOF ∩ GeomEOSM.
• Realease R3: EO, OSM and OF data enriched with RRVS attributes.

Table 1 shows the evolution of the average value for selected attributes as the dataset evolves over
time. Figure 6a shows the integrated building inventory at release 3 (R3), with colors indicating the
different sources of the building geometries. Figure 6b shows the database state at transaction time 2
after the update of EO geometries with geometries from OSM. This state lies in between two releases
(R1 and R2) and has been recovered using the transaction time history query (ttime_history()) of the
database model.

ISPRS Int. J. Geo-Inf. 2017, 6, 114 14 of 20

between two releases (R1 and R2) and has been recovered using the transaction time history query
(ttime_history()) of the database model.

(a) (b)

Figure 6. (a) Shows the integrated building inventory at release 3 (R3); (b) shows the database state
at transaction time 2 after the update of Earth Observation (EO) geometries with geometries from
OpenStreetMap (OSM).

6.2. Scenario II: Real-World Changes and Object Life-Cycle

In the second scenario, the building stock of a city is modelled in space and time throughout
different phases of disaster risk management, from pre-event mitigation to post-event response and
long-term recovery. Real world changes to the building stock (e.g., retrofit of buildings) and
information updates (e.g., new information becomes available about existing buildings) are
considered in the scenario. The GEM Building Taxonomy has been fully implemented into the
database structure to characterize the building stock in a standardized and comparable way.
Additional attributes relating to a building’s structural vulnerability and damage grades were
implemented based on the European Macro-seismic Scale 1998 (EMS-98) [31]. Data acquisition is
simulated, exploiting different information sources at varying spatial resolution. The data that are
used in this scenario have been imported from independent acquisition campaigns. The
combination of building attributes and geometries does not represent the actual inventory of a real
city but has been assembled to clearly exemplify several application scenarios of interest for risk
management. The building footprints have been imported from OpenStreetMap (OSM) by selecting
500 buildings from a German city. The building attributes were extracted from a database of
buildings that were inspected by structural engineers by using the Remote Rapid Visual Screening
(RRVS) procedure described in [27]. Further attributes were derived from census data.

Figure 7 depicts the timeline of events that are considered in the scenario. Both transaction (tt)
and valid (vt) timelines are represented. At tt0, the database is populated with 500 building
geometries from OSM and attribute values from RRVS at per-building resolution and with a
zonation of the city from Earth Observation (EO) data at a neighborhood resolution. At tt1/vt0, a
Rapid Visual Screening (RVS) survey [6] indicates 50 buildings that did not comply with the
available building code and that were retrofitted to improve their seismic resistance. At tt2/vt1,
another RVS survey highlights 20 buildings that were modified since the previous survey. The

Figure 6. (a) Shows the integrated building inventory at release 3 (R3); (b) shows the database state
at transaction time 2 after the update of Earth Observation (EO) geometries with geometries from
OpenStreetMap (OSM).

6.2. Scenario II: Real-World Changes and Object Life-Cycle

In the second scenario, the building stock of a city is modelled in space and time throughout
different phases of disaster risk management, from pre-event mitigation to post-event response
and long-term recovery. Real world changes to the building stock (e.g., retrofit of buildings) and
information updates (e.g., new information becomes available about existing buildings) are considered
in the scenario. The GEM Building Taxonomy has been fully implemented into the database structure
to characterize the building stock in a standardized and comparable way. Additional attributes relating
to a building’s structural vulnerability and damage grades were implemented based on the European
Macro-seismic Scale 1998 (EMS-98) [31]. Data acquisition is simulated, exploiting different information
sources at varying spatial resolution. The data that are used in this scenario have been imported from
independent acquisition campaigns. The combination of building attributes and geometries does
not represent the actual inventory of a real city but has been assembled to clearly exemplify several
application scenarios of interest for risk management. The building footprints have been imported

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 15 of 20

from OpenStreetMap (OSM) by selecting 500 buildings from a German city. The building attributes
were extracted from a database of buildings that were inspected by structural engineers by using the
Remote Rapid Visual Screening (RRVS) procedure described in [27]. Further attributes were derived
from census data.

Figure 7 depicts the timeline of events that are considered in the scenario. Both transaction (tt) and
valid (vt) timelines are represented. At tt0, the database is populated with 500 building geometries from
OSM and attribute values from RRVS at per-building resolution and with a zonation of the city from
Earth Observation (EO) data at a neighborhood resolution. At tt1/vt0, a Rapid Visual Screening (RVS)
survey [6] indicates 50 buildings that did not comply with the available building code and that were
retrofitted to improve their seismic resistance. At tt2/vt1, another RVS survey highlights 20 buildings
that were modified since the previous survey. The owners added an additional story to their house,
which is not compliant with the existing building code for seismic resistant construction. At tt3, more
information about the buildings becomes available from a newly released census report that, for the
first time, includes information about the occupancy of buildings in the city. The information is used
to update the database. At tt4/vt2, a major earthquake occurs in the region, which leads to structural
failures and total collapses as well as a large number of damaged buildings in the city. As part of
a first damage detection survey, only total collapses (125 buildings) are recorded and stored in the
database. From a second damage survey, more information about the damage grades of 200 buildings
relating to the same event (vt2) becomes available and is stored in the database at tt5. As response to
the disaster, at tt6/vt3, 100 temporary shelters are constructed to host people who lost their homes
as a consequence of the earthquake. As part of the long-term recovery, permanent housing starts
and 95 new buildings are constructed at tt7/vt4. Finally, after all displaced people received support
from the government and were able to settle down in permanent housing, the temporary shelters are
removed at tt8/vt5. The information about the evolution of the recovery phase could be detected by
change detection analysis of EO data and in-situ surveys, as is described in [44].

ISPRS Int. J. Geo-Inf. 2017, 6, 114 15 of 20

owners added an additional story to their house, which is not compliant with the existing building
code for seismic resistant construction. At tt3, more information about the buildings becomes
available from a newly released census report that, for the first time, includes information about the
occupancy of buildings in the city. The information is used to update the database. At tt4/vt2, a
major earthquake occurs in the region, which leads to structural failures and total collapses as well
as a large number of damaged buildings in the city. As part of a first damage detection survey, only
total collapses (125 buildings) are recorded and stored in the database. From a second damage
survey, more information about the damage grades of 200 buildings relating to the same event (vt2)
becomes available and is stored in the database at tt5. As response to the disaster, at tt6/vt3, 100
temporary shelters are constructed to host people who lost their homes as a consequence of the
earthquake. As part of the long-term recovery, permanent housing starts and 95 new buildings are
constructed at tt7/vt4. Finally, after all displaced people received support from the government and
were able to settle down in permanent housing, the temporary shelters are removed at tt8/vt5. The
information about the evolution of the recovery phase could be detected by change detection
analysis of EO data and in-situ surveys, as is described in [44].

Figure 7. Transaction and valid timelines of the application scenario and overview of the events
considered in the application scenario.

Figure 8 shows the evolution of the integrated building inventory over different transaction
times (tt0, tt4, tt6, and tt8). The different database states have been recovered using the transaction
time history query (ttime_gethistory()), which creates a view of the transaction time history.

SELECT * FROM history.ttime_gethistory(‘object_res1.ve_resolution1’, ‘history.ttime_history’);

Figure 7. Transaction and valid timelines of the application scenario and overview of the events
considered in the application scenario.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 16 of 20

Figure 8 shows the evolution of the integrated building inventory over different transaction times
(tt0, tt4, tt6, and tt8). The different database states have been recovered using the transaction time
history query (ttime_gethistory()), which creates a view of the transaction time history.

SELECT * FROM history.ttime_gethistory(‘object_res1.ve_resolution1’, ‘history.ttime_history’);ISPRS Int. J. Geo-Inf. 2017, 6, 114 16 of 20

Figure 8. Integrated building inventory at different transaction times as recovered from the database
archive by the ttime_gethistory() function.

Figure 9 shows the full valid time history of the database as recovered from the archive of the
database with the valid time history function (vtime_gethistory()). It includes for each object a full
lifecycle with the type of real-world change (creation, modification, and destruction), valid time of
the changes, and recovered attributes at any given valid time. The magnified view and table in
Figure 9 show the lifecycle of a selected object (gid: 480). It can be seen that this building was built
on 06-01-1996, modified on 06-01-2014, and finally destroyed as a result of the earthquake on
12-01-2014. For each timestamp, a small subset of building attributes and their values are displayed
to show how the building has changed over time. These changes include both real-world changes,
such as the modification applied to the building by adding an additional floor, but also information
updates, such as the change of the occupancy (OCCUPY) from unknown (OC99) to residential
(RES99) and the occupancy detail (OCCUPY_DT) from unknown (OCCDT99) to single dwelling
(RES1). The building is of material type (MAT_TYPE) unreinforced masonry (MUR) with material
properties (MAT_PROP) adobe (ADO). Its height (HEIGHT) is defined as being in number of floors
above ground (H) and changed from one floor to two floors (HEIGHT_NUM). For a comprehensive
description of building attributes and their values, the reader is referred to the GEM Building
Taxonomy [29]. The following query creates a view of the valid time history.

SELECT * FROM history.vtime_gethistory(‘object_res1.ve_resolution1’, ‘history.vtime_history’,
‘yr_built_vt’, ‘yr_built_vt1’);

In the following, a spatio-temporal query example is shown, which involves spatial, attribute,
valid, and transaction time components. The query selects from the valid time history view all the
buildings that were modified in the year before the earthquake (between 2013-12-01 and 2014-12-01)
that are located inside a buffer of 50 m to a street, that are of material type reinforced masonry
(MR), and that got an information update within the last week from the issue of the query.

SELECT DISTINCT ON (a.gid) a.* FROM history.vtime_history as a, streets as b

WHERE a.yr_built_vt1 >= ‘2013-12-01’ AND a.yr_built_vt1 <= ‘2014-12-01’ AND

a.yr_built_vt = ‘MODIF’ AND

ST_INTERSECTS(ST_BUFFER(b.the_geom,50), a.the_geom) AND

Figure 8. Integrated building inventory at different transaction times as recovered from the database
archive by the ttime_gethistory() function.

Figure 9 shows the full valid time history of the database as recovered from the archive of the
database with the valid time history function (vtime_gethistory()). It includes for each object a full
lifecycle with the type of real-world change (creation, modification, and destruction), valid time of
the changes, and recovered attributes at any given valid time. The magnified view and table in
Figure 9 show the lifecycle of a selected object (gid: 480). It can be seen that this building was built on
06-01-1996, modified on 06-01-2014, and finally destroyed as a result of the earthquake on 12-01-2014.
For each timestamp, a small subset of building attributes and their values are displayed to show how
the building has changed over time. These changes include both real-world changes, such as the
modification applied to the building by adding an additional floor, but also information updates,
such as the change of the occupancy (OCCUPY) from unknown (OC99) to residential (RES99) and the
occupancy detail (OCCUPY_DT) from unknown (OCCDT99) to single dwelling (RES1). The building
is of material type (MAT_TYPE) unreinforced masonry (MUR) with material properties (MAT_PROP)
adobe (ADO). Its height (HEIGHT) is defined as being in number of floors above ground (H) and
changed from one floor to two floors (HEIGHT_NUM). For a comprehensive description of building
attributes and their values, the reader is referred to the GEM Building Taxonomy [29]. The following
query creates a view of the valid time history.

SELECT * FROM history.vtime_gethistory(‘object_res1.ve_resolution1’, ‘history.vtime_history’,

‘yr_built_vt’, ‘yr_built_vt1’);

In the following, a spatio-temporal query example is shown, which involves spatial, attribute,
valid, and transaction time components. The query selects from the valid time history view all the
buildings that were modified in the year before the earthquake (between 2013-12-01 and 2014-12-01)
that are located inside a buffer of 50 m to a street, that are of material type reinforced masonry (MR),
and that got an information update within the last week from the issue of the query.

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 17 of 20

SELECT DISTINCT ON (a.gid) a.* FROM history.vtime_history as a, streets as b

WHERE a.yr_built_vt1 >= ‘2013-12-01’ AND a.yr_built_vt1 <= ‘2014-12-01’ AND

a.yr_built_vt = ‘MODIF’ AND

ST_INTERSECTS(ST_BUFFER(b.the_geom,50), a.the_geom) AND

a.mat_type = ‘MR’ AND

a.transaction_timestamp > (timestamp ‘now’ - interval ‘1 week’)

ORDER BY a.gid, a.transaction_timestamp DESC;

ISPRS Int. J. Geo-Inf. 2017, 6, 114 17 of 20

a.mat_type = ‘MR’ AND

a.transaction_timestamp > (timestamp ‘now’ - interval ‘1 week’)

ORDER BY a.gid, a.transaction_timestamp DESC;

Figure 9. Valid time history of the database, which includes for each object an information lifecycle
with the type of real-world change, valid time of the changes, and recovered attributes at any given
valid time. The magnified view and table show the lifecycle of a selected object.

7. Discussion

This work provides a conceptual and technological framework for spatio-temporal integration,
management, and versioning of exposure information throughout different phases of the disaster
risk management cycle. Application scenarios have been provided to showcase the capabilities of
the database and lifecycle management solution. Yet, a comprehensive testing of the full capabilities
of the solution and the presented workflows on large real-world datasets remains an open task. A
dynamic integration of large area OSM data with versioning and history support is envisaged and
will be a good opportunity to further test the potentials and limitations of the proposed solutions
and, in particular, to assess its scalability.

The database model and life cycle management solution provide a solid backend for data and
metadata management in order to integrate data from different sources with varying quality,
vintage, and reliability. In its current form, no explicit integration algorithm is implemented at the
database level. However, several promising approaches for probabilistic information integration
algorithms are available [39,41] that could be combined with the proposed solution. The decision
criterion that matches objects between different datasets and that triggers the check whether an
object should be considered for an update or not is currently based on a spatial intersection of
existing and new object geometries. This works well when object geometries are simple and of
generally high accuracy and/or distributed with enough proximity to each other. In case of an
integration of complex, large scale, and low accuracy datasets this, however, could introduce object
mismatches. In such a case where pure geometrical matching would be error-prone and unique

Figure 9. Valid time history of the database, which includes for each object an information lifecycle
with the type of real-world change, valid time of the changes, and recovered attributes at any given
valid time. The magnified view and table show the lifecycle of a selected object.

7. Discussion

This work provides a conceptual and technological framework for spatio-temporal integration,
management, and versioning of exposure information throughout different phases of the disaster
risk management cycle. Application scenarios have been provided to showcase the capabilities of the
database and lifecycle management solution. Yet, a comprehensive testing of the full capabilities of the
solution and the presented workflows on large real-world datasets remains an open task. A dynamic
integration of large area OSM data with versioning and history support is envisaged and will be a good
opportunity to further test the potentials and limitations of the proposed solutions and, in particular,
to assess its scalability.

The database model and life cycle management solution provide a solid backend for data and
metadata management in order to integrate data from different sources with varying quality, vintage,
and reliability. In its current form, no explicit integration algorithm is implemented at the database
level. However, several promising approaches for probabilistic information integration algorithms

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 18 of 20

are available [39,41] that could be combined with the proposed solution. The decision criterion that
matches objects between different datasets and that triggers the check whether an object should be
considered for an update or not is currently based on a spatial intersection of existing and new object
geometries. This works well when object geometries are simple and of generally high accuracy and/or
distributed with enough proximity to each other. In case of an integration of complex, large scale,
and low accuracy datasets this, however, could introduce object mismatches. In such a case where
pure geometrical matching would be error-prone and unique object identifiers are not available, more
sophisticated approaches that match objects between different datasets by using several attributes and
fuzzy matching criteria may be required.

Queries about location, spatial properties and relationships, time, temporal properties and
relationships, and spatio-temporal behaviors and relationships are supported. Multi-representation in
the form of a multi-resolution approach with dynamic linkage between resolutions is also included.
However, some functionalities such as the generalization of geometries between different resolutions
should be further extended and different generalization functions should be made available. Only a
simple generalization function for polygon geometries is currently implemented in the database model.
Modifications and extensions can, however, be applied without major changes to the basic design.

8. Conclusions

The consideration for the information life cycle, from collection and storing to updating and
disposal, is rarely mentioned in the context of disaster risk management. Yet, ever-increasing amounts
of information are being made available. With the provision of high-quality EO data, the increasing
availability of data from open-sources, and the results of the collection effort of many non-interacting
players (e.g., governmental institutions, NGOs, research institutions), a progressive layering of
information with different quality, vintage, and reliability unfolds. In order to make these growing and
increasingly dynamic datasets accessible and actionable in the framework of disaster risk management,
consistent spatio-temporal data management plays a key role. The proposed database and information
life cycle solution for building exposure data provides a conceptual and technological solution to
cope with this development. The specific points that were jointly addressed by this study include
spatio-temporal data modelling, the use of facetted taxonomies, multi-representation, and information
life-cycle management. From each of these research domains, the most promising approaches have
been selected and combined into a comprehensive solution that meets the needs of current and future
disaster risk management practices. The presented solution is free and open-source and can be accessed
from GitHub [45] along with the scenario data and an extended set of sample queries. Database design
is an iterative process, and the proposed solution is to be considered a prototype that still needs
to be further tested in real world applications. Currently, the proposed solution is used to manage
a multi-scale exposure model for Central Asia [46]. Future work will be dedicated to probabilistic
information integration and to the implementation of multi-hazard integrated taxonomies aimed at
the prompt assessment of risk in complex urban environments.

Supplementary Materials: The presented solution is distributed on a free and open-source basis and is available
online at https://github.com/MWieland/sensum_db.

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for suggestions
that helped to improve this paper. Furthermore, the authors would like to thank the Boundless team and all
contributors for their great efforts and achievements with the development of GeoGig and the OpenStreetMap
community for their enthusiasm and mapping efforts worldwide. This research has been supported by the
SENSUM project (Grant Agreement Number 312972).

Author Contributions: Marc Wieland designed and implemented the solution, conducted the experiments and
wrote the paper. Massimiliano Pittore supervised the research activity and provided guidance and suggestions for
the database design and revisions during the writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

https://github.com/MWieland/sensum_db

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 19 of 20

References

1. Aubrecht, C.; Fuchs, S.; Neuhold, C. Spatio-temporal aspects and dimensions in integrated disaster risk
management. Nat. Hazards 2013, 68, 1205–1216. [CrossRef]

2. Bilham, R. The seismic future of cities. Bull. Earthq. Eng. 2009, 7, 839–887. [CrossRef]
3. Spence, R. Saving lives in earthquakes: Successes and failures in seismic protection since 1960.

Bull. Earthq. Eng. 2007, 5, 139–251. [CrossRef]
4. Uprety, P.; Yamazaki, F.; Dell’Acqua, F. Damage detection using high-resolution SAR imagery in the 2009

L’Aquila, Italy, earthquake. Earthq. Spectr. 2013, 29, 1521–1535. [CrossRef]
5. Brown, D.; Saito, K.; Liu, M.; Spence, R.; So, E.; Ramage, M. The use of remotely sensed data and ground

survey tools to assess damage and monitor early recovery following the 12.5.2008 Wenchuan earthquake in
China. Bull. Earthq. Eng. 2012, 10, 741–764. [CrossRef]

6. Federal Emergency Management Agency (FEMA). Rapid Visual Screening of Buildings for Potential Seismic
Hazards: A Handbook, 2nd ed.Applied Technology Council: Washington, DC, USA, 2002.

7. Silva, V.; Crowley, H.; Varum, H.; Pinho, R. Seismic risk assessment for mainland Portugal. Bull. Earthq. Eng.
2015, 13, 429–457. [CrossRef]

8. Geiß, C.; Taubenböck, H. Remote sensing contributing to assess earthquake risk: From a literature review
towards a roadmap. Nat. Hazards 2013, 68, 7–48. [CrossRef]

9. Pittore, M.; Wieland, M.; Fleming, K. Perspectives on global dynamic exposure modelling for geo-risk
assessment: From remote sensing to crowd-sourcing. Nat. Hazards 2016. [CrossRef]

10. GeoGig by LocationTech. Available online: http://geogig.org/ (accessed on 3 January 2017).
11. Roshannejad, A.; Kainz, W. Handling identities in spatio-temporal databases. In Proceedings of the

International Symposium on Computer-Assisted Cartography, Charlotte, NC, USA, 27–29 February 1995.
12. Paredaens, J.; Van den Bussche, J.; Van Gucht, D. Towards a theory of spatial database queries

(extended abstract). In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Minneapolis, MN, USA, 24–27 May 1994.

13. Snodgrass, R.T. Temporal databases. In Theories and Methods of Spatio-Temporal Reasoning in Geographic
Space; Frank, A.U., Campari, I., Formentini, U., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 1992; pp. 22–64.

14. Langran, G. Time in Geographic Information Systems; Taylor & Francis: Oxford, UK, 1992.
15. Worboys, M. A unified model for spatial and temporal information. Comput. J. 1994, 37, 1–9. [CrossRef]
16. Raza, A.; Kainz, W. Cell tuple based spatio-temporal data model: An object oriented approach. In Proceedings

of the 7th ACM International Symposium on Advances in Geographic Information Systems, Kansas City,
MO, USA, 2–6 November 1999.

17. Raza, A. Working with spatio-temporal data type. In Proceedings of the XXII Congress of the International
Society for Photogrammetry and Remote Sensing, Melbourne, Australia, 25 August–1 September 2012.

18. Zhao, L.; Jin, P.; Zhang, L.; Wang, H.; Lin, S. Developing an Oracle-based spatio-temporal information
management system. Lect. Notes Comput. Sci. 2011, 6637, 168–176.

19. Abraham, T.; Roddick, J.F. Survey of spatio-temporal databases. GeoInformatica 1999, 3, 61–99. [CrossRef]
20. Peuquet, D.J. Making space for time: Issues in space-time data representation. GeoInformatica 2001, 5, 11–32.

[CrossRef]
21. Pelekis, N.; Theodoulidis, B.; Kopanakis, I.; Theodoridis, Y. Literature review of spatio-temporal database

models. Knowl. Eng. Rev. 2004, 19, 235–274. [CrossRef]
22. Goodchild, M.F.; Glennon, J.A. Crowdsourcing geographic information for disaster response: A research

frontier. Int. J. Digit. Earth 2010, 3, 231–241. [CrossRef]
23. Sester, M.; Sarjakoski, T.; Harrie, L.; Hampe, M.; Koivula, T.; Sarjakoski, T.; Lehto, L.; Birgit, E.; Nivala, A.-M.;

Stigmar, H. Real-Time Generalisation and Multiple Representation in the GiMoDig Mobile Service; Lund University:
Lund, Sweden, 2004.

24. Stoter, J.E.; Morales, J.M.; Lemmens, R.L.G.; Meijers, B.M.; van Oosterom, P.J.M.; Quak, C.W.; Uitermark, H.T.;
Brink, L. Data model for multi-scale topographical data. In Headway in Spatial Data Handling; Ruas, A.,
Gold, C., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany,
2008; pp. 233–254.

http://dx.doi.org/10.1007/s11069-013-0619-9
http://dx.doi.org/10.1007/s10518-009-9147-0
http://dx.doi.org/10.1007/s10518-006-9028-8
http://dx.doi.org/10.1193/060211EQS126M
http://dx.doi.org/10.1007/s10518-011-9318-7
http://dx.doi.org/10.1007/s10518-014-9630-0
http://dx.doi.org/10.1007/s11069-012-0322-2
http://dx.doi.org/10.1007/s11069-016-2437-3
http://geogig.org/
http://dx.doi.org/10.1093/comjnl/37.1.26
http://dx.doi.org/10.1023/A:1009800916313
http://dx.doi.org/10.1023/A:1011455820644
http://dx.doi.org/10.1017/S026988890400013X
http://dx.doi.org/10.1080/17538941003759255

www.manaraa.com

ISPRS Int. J. Geo-Inf. 2017, 6, 114 20 of 20

25. Hampke, M.; Sester, M. Real-time integration and generalization of spatial data for mobile applications.
Geowiss. Mitteilungen 2002, 60, 1–13.

26. Kolbe, H. CityGML, KML und das Open Geospatial Consortium. In Proceedings of the 13th Münchner
Fortbildungsseminar Geoinformationssysteme, Munich, Germany, 26–28 February 2008.

27. Wieland, M.; Pittore, M.; Parolai, S.; Begaliev, U.; Yasunov, P.; Tyagunov, S.; Moldobekov, B.; Saidiy, S.;
Ilyasov, I.; Abakanov, T. A Multiscale Exposure Model for Seismic Risk Assessment in Central Asia.
Seismol. Res. Lett. 2015, 86, 210–222. [CrossRef]

28. Hoffmann, E.; Chamie, M. Standard Statistical Classifications: Basic Principles; United Nations Statistics
Division: New York, NY, USA, 1999.

29. Brzev, S.; Scawthorn, C.; Charleson, A.W.; Allen, L.; Greene, M.; Jaiswal, K.; Silva, V. GEM Building
Taxonomy v2.0; GEM Building Taxonomy Global Component; Global Earthquake Model: Pavia, Italy, 2013.

30. Federal Emergency Management Agency (FEMA). Multi-Hazard Loss Estimation Methodology; FEMA:
Washington, DC, USA, 2003.

31. Grünthal, G.; Musson, R.M.W.; Schwarz, J.; Stucchi, M. European Macroseismic Scale 1998 (EMS-98); Cahiers
du Centre Européen de Géodynamique et de Séismologie 15; Centre Européen de Géodynamique et de
Séismologie: Luxembourg, 1998.

32. Wald, D.J.; Earle, P.S.; Allen, T.I.; Jaiswal, K.; Porter, K.; Hearne, M. Development of the US Geological
Survey’s PAGER system (Prompt Assessment of Global Earthquakes for Response). In Proceedings of the
14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008.

33. World Housing Encyclopedia. Available online: http://www.world-housing.net/ (accessed on
4 January 2013).

34. Broughton, V. Faceted classification as a basis for knowledge organization in a digital environment: The bliss
bibliographic classification as a model for vocabulary management and the creation of multidimensional
knowledge structures. New Rev. Hypermedia Multimedia 2002, 7, 67–102. [CrossRef]

35. Chen, Y. Information valuation for information lifecycle management. In Proceedings of the Second IEEE
International Conference on Autonomic Computing, Seattle, WA, USA, 13–16 June 2005.

36. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press:
Boca Raton, FL, USA, 2002.

37. Huber, F.; Schmidt-Petri, C. Degrees of Belief ; Springer: Heidelberg, Germany, 2008.
38. Shi, W. Towards uncertainty-based geographic information science–theories of modelling uncertainties in

spatial analyses. In Advances in Spatio-Temporal Analysis; Taylor and Francis: London, UK, 2007.
39. Tu, H.; Allanach, J.; Singh, S.; Pattipati, K.R.; Willett, P. Information integration via hierarchical and hybrid

Bayesian networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2006, 36, 19–33.
40. Butenuth, M.; Gösseln, G.v.; Tiedge, M.; Heipke, C.; Lipeck, U.; Sester, M. Integration of heterogeneous

geospatial data in a federated database. ISPRS J. Photogramm. Remote Sens. 2007, 62, 328–346. [CrossRef]
41. Pittore, M.; Wieland, M. Toward a rapid probabilistic seismic vulnerability assessment using satellite and

ground-based remote sensing. Nat Hazards 2013, 68, 115–145. [CrossRef]
42. GitHub. Available online: https://github.com/ (accessed on 3 January 2017).
43. Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J. Exposure Estimation from Multi-Resolution Optical Satellite

Imagery for Seismic Risk Assessment. ISPRS Int. J. Geo-Inf. 2012, 1, 69–88. [CrossRef]
44. Wang, S.; So, E.; Smith, P. Detecting tents to estimate the displaced populations for post-disaster relief using

high resolution satellite imagery. Int. J. Appl. Earth Obs. Geoinform. 2015, 36, 87–93. [CrossRef]
45. SENSUM Database GitHub Repository. Available online: https://github.com/MWieland/sensum_db

(accessed on 14 March 2017).
46. Wieland, M.; Pittore, M.; Parolai, S.; Begaliev, U.; Yasunov, P.; Niyazov, J.; Tyagunov, S.; Moldobekov, B.;

Saidiy, S.; Ilyasov, I.; et al. Towards a cross-border exposure model for the Earthquake Model Central Asia.
Ann. Geophys. 2015, 58, S0106.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1785/0220140130
http://www.world-housing.net/
http://dx.doi.org/10.1080/13614560108914727
http://dx.doi.org/10.1016/j.isprsjprs.2007.04.003
http://dx.doi.org/10.1007/s11069-012-0475-z
https://github.com/
http://dx.doi.org/10.3390/ijgi1010069
http://dx.doi.org/10.1016/j.jag.2014.11.013
https://github.com/MWieland/sensum_db
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.

	Introduction
	Exposure Data Management in Support of Disaster Risk Management
	Spatio-Temporal Databases
	Multi-Representation of Spatial Objects
	Taxonomy
	Information Life-Cycle Management
	Distributed Version Control

	Database Model
	Taxonomy
	Multi-Resolution Spatial Support
	Multi-Temporal Support

	Information Life-Cycle Management Solution
	Information Creation
	Information Usage
	Information Modification and Value Updating
	Information Disposal and Archiving

	Distributed Version Control and Release
	Application Scenarios
	Scenario I: Information Integration and Value Updating
	Scenario II: Real-World Changes and Object Life-Cycle

	Discussion
	Conclusions

